Osteoarthritis Update - What Can We Do?
The Impact of New Techniques and Technology

Michael L. Caravelli, MD
The Center for Orthopaedic and Neurosurgical Care and Research
Grand Rounds
St. Charles Hospital Bend
April 29, 2011

Disclosures/Conflicts of Interest

- **External Advisory Role:** none
- **Research Support:** none

Overview

- General overview of arthritis
- Clinical evaluation of the Arthritic Hip and Knee
- Treatment Options
- Total Joint Replacement
- Impact of New Techniques and Technologies

Arthritis—Background

- Arthritis is the second most common chronic condition in the US
 - Most common among elderly
 - 20-30% of people over age 70 suffer from osteoarthritis (OA) of the hip
 - Seeing increased demand in patients 40-60 yo
 - Technology and Delivery Improvements
 - Patient Demand and Lifestyle
 - DTCA
 - 80% of patients with OA have some limitation of movement
 - 25% cannot perform major daily activities

Causes of Degenerative Arthritis

- **Primary**
 - “Idiopathic” (Unknown)—80%
- **Secondary**
 - Post-traumatic
 - Developmental dysplasia
 - Inflammatory arthritis
 - Osteonecrosis
 - Infection
 - Metabolic Disorders
 - Hemoglobinopathies and other blood disorders
 - Autoimmune disorders

Diagnosis—History

- **Location:**
 - Hip
 - Grain with Thigh Radiation
 - Buttock
 - Overlying Greater Trochanter
 - Radicular symptoms/paresthesias
 - Knee
 - Anterior vs. Posterior
 - Diffuse vs. Isolated joint line pain
 - Intensity
 - Duration of symptoms
 - Precipitating factors:
 - Activity-related pain
 - Position related?
Diagnosis—History (cont.)

- Stiffness/swelling
- Mechanical symptoms/giving way
- Limitation in function
 - ADL’s
 - Walking tolerance (confounded by co-morbid conditions)
 - Use of assistive devices (cane, walker, wheelchair)
 - Threaten Recreational and Social Activities

Impact on Quality of Life!!!

- Helps tailor treatment recommendations
- Improved outcomes and patient satisfaction

Physical Exam: Hip

- Gait
- Active straight leg raise (Stinchfield test)
- Range of motion/joint contractures
- Leg lengths (true and apparent)
- Neurovascular exam

Physical Exam: Hip

- Antalgic vs. Trendelenburg vs. Coxalgic Gait
 - Antalgic
 - Shortened stance phase affected side
 - Trendelenburg
 - Weak abductor power affected side
 - Coxalgic
 - Pain affected side normal abductor power

Physical Exam: Hip

- True LLD
 - Osseous abnormality in femur, tibia or hindfoot
 - Hip or Knee Soft Tissue contracture
- Apparent (Functional) LLD
 - Fixed or Dynamic Pelvic Inequality

Physical Exam: Hip

- Thomas test
Physical Exam: Knee

- Inspection:
 - Gait
 - Mechanical alignment (varus/valgus)
 - Effusion
 - Skin changes
- Palpation
 - Crepitus
 - Warmth
 - Tenderness
- Range of motion
- Ligamentous exam
 - Varus and Valgus Stability
 - AP Stability
- Provocative tests (McMurray, Apley, Steinmann, Patellar Grind)

Provocative Maneuvers

Diagnosis: Radiographic Evaluation

- Hip Osteoarthritis
 - AP Pelvis
 - Dedicated AP and Lateral of the Affected Hip
- Knee Osteoarthritis
 - Standing Bilateral AP Knee
 - Standing Bilateral PA Bent View
 - Lateral View
 - Merchant View

Diagnosis: Advanced Imaging Studies

- MRI
 - Soft Tissue Pathology
 - Ossicle or Stress Fracture
 - Aseptic Necrosis
 - Limited usefulness in OA
- Bone scan
 - Identify supra-physiological skeletal process such as neoplasm, infection, accrue
 - Limited usefulness in OA
- CT
 - Helpful to assess osseous definition
 - Rarely required in OA
- Ultrasound
 - Diagnosis of fluid collection/aspiration
 - Functional studies
 - Limited usefulness in OA
Differential Diagnosis: Hip

- **Intrinsic**
 - Primary or Secondary Osteoarthritis
 - Bursitis (greater trochanteric, iliopsoas)
 - Labral tear/intra-articular loose body
 - Femoral Head/Neck Pathology
 - Aseptic Necrosis
 - Neoplasm
 - Occult or Stress Fracture

- **Extrinsic**
 - Lumbosacral spine disease
 - Spondyloarthropathy

Differential Diagnosis (cont.)

- **Intrinsic**
 - Primary or Secondary Osteoarthritis
 - Tendonitis/bursitis
 - Meniscal/chondral injury
 - Ligamentous injury
 - Symptomatic Popliteal Cyst
 - Occult or Stress Fracture

- **Extrinsic**
 - Lumbosacral spine disease
 - Spondyloarthropathy
 - Referred Pain from Hip Osteoarthritis (Medial Knee)
 - Peripheral vascular disease/Vascular Claudication
 - Nerve injury/irritation (sciatic, femoral, meralgia paresthetica)
 - Metabolic disease (Paget's disease, osteomalacia)
 - Malignancy/metastases
 - Hernia (femoral, inguinal, obturator)
 - Causalgia/Complex Regional Pain Syndrome
 - Other Referred pain

Diagnosis: Provocative Tests

- Anesthetic arthrogram (hip)
- Epidural steroid injection

Differential Diagnosis (cont.)

- **Extrinsic**
 - Lumbosacral spine disease
 - Spondyloarthropathy
 - Referred Pain from Hip Osteoarthritis (Medial Knee)
 - Peripheral vascular disease/Vascular Claudication
 - Nerve injury/irritation (saphenous)
 - Primary tumor or Malignancy/metastases (RARE)
 - Causalgia/Complex Regional Pain Syndrome
 - Other Referred pain

- **Activity Modification**
- **Weight Loss**
- **Bracing**
- **Cane/walker**
- **Physical Therapy**
Treatment Options—Medications

- **Anti-inflammatories**
 - Ibuprofen, Advil, Naprosyn
- **COX-2 Inhibitors**
 - Bextra, Vioxx, Celebrex
- **Nutritional supplements**
 - Glucosamine/Chondroitin Sulfate

Treatment Options—Injections

- **Corticosteroid**

- **Viscosupplementation**
 - (proposed anti-inflammatory, anabolic, local analgesic, and chondroprotective effects)

 Conclusion:
 - Support exist for VS and CS injections for the temporary management of symptoms of OA
 - AAOS Clinical practice guidelines

Surgical Treatment Options

- Joint preserving operations
 - Arthroscopy
 - Osteotomy
 - Autologous chondrocyte transplantation

- **Arthroplasty Options:**
 - Hemi/uni-compartmental arthroplasty
 - Resurfacing arthroplasty
 - Total joint arthroplasty

Goals of Osteoarthritis Treatment

- **Relieve pain!!**
- Preserve function, mobility
Nonoperative or Operative?

- All therapeutic modalities have a common goal:
 - To control a patient’s symptoms to permit them an acceptable Quality of Life
 - When pain or dysfunction is unable to be controlled by nonoperative measures and a patient’s quality of life is threatened, TJR becomes a predictable and safe alternative

When to Refer?

Anytime a patient wishes to further their education on their options, both nonoperative and operative

The Future of Total Joint Replacement

- Value = Quality/Cost
- Standardized Delivery Pathways
- National Joint Registry
- Treatment Efficacy
- Patient Safety
- Physician Accountability
- Patient Education

Results following Hip and Knee Replacement

- About 90% of total hip and knee replacements are successful in terms of pain relief up to ten years following surgery.
 - The average hip or knee replacement lasts 15-20 years, depending on:
 - Age
 - Weight
 - Activity level

Complications

- Early (<10%)
 - Dislocation/instability
 - Nerve palsy
 - Infection
- Late (> 5 yrs post op)
 - Wear of articular bearing surface
 - Osteolysis
 - Mechanical loosening
 - Peri-prosthetic fracture
 - Implant failure

TJR Volume Estimates

- Primary and Revision TJA Procedures Performed in the US
- Projections
TJR Background

- Total hip replacement is one of the most cost-effective health care interventions in all of medicine

Health-Related Quality of Life in Total Hip and Total Knee Arthroplasty: A Qualitative and Systematic Review of the Literature

- Health Improvements
 - Substantial improvements in the scores for physical health – pain and physical function
 - Population normative values
 - Poorer preoperative SF-36 scores vs normal population
 - Improvement seen postoperatively
 - THA scores equaled scores of normal population
- Age Effect
 - Postoperative improvement similar despite age
- Gender Effect
 - Data difficult to interpret

Predictors of Health-Related Quality-Of-Life improvements

- High baseline preoperative psychosocial scores
 - Socioeconomic demographics, educational level, functional level, emotional state
- High volume facilities
- Fewer medical comorbidities

Weight Effect

- Literature suggests obesity alone does not influence outcomes

Cost Effectiveness

- Cost per QALY decreases as a function of time

TJR – Improvements in the last 10-15 years

- Technology
 - Implant Design
 - The Concept of MIS
 - Computer Assisted Surgery
- Delivery
 - ANESTHESIA, ANESTHESIA, ANESTHESIA
 - Operating Room and Hospital Efficiencies
- Patient Safety
 - Clinical Care Pathways

Prosthesis Design

- Cementless Implants
 - Biologic Ingrowth/Ongrowth
- Improved Revision Components
 - Improved Modularity
 - Design address complex technical factors like bone loss and instability
- Bearing Surface Improvements
 - Highly Cross-Linked UHMWPE
 - Ceramics
 - Metal

Alternate Bearing Surfaces

- Traditional bearing surfaces in TJA involve metal and high-density polyethylene
- Wear of bearing surface/osteolysis is primary cause of late failure in TJA
Alternate Bearing Surfaces – HCL Polyethylene, Metal and Ceramic

Advantages:
- Lower wear rates
- Improved longevity of prosthesis

Potential drawbacks:
- Fracture (ceramics)
- Metal ion toxicity (metal-metal)

What is Minimally Invasive Surgery

- A Direct Anterior THA? NO
- A Shorter Hospital Stay? NO
- Using a robot or computer? NO
- A Smaller Incision? NO
- A Smaller Implant? NO
- Unique to Total Joint Replacement? NO

A CONCEPT OF WELL-PLANNED, WELL-DESIGNED DELIVERY OF CARE

Goals of “Minimally Invasive” TJA

- Limit Biologic Footprint
- Minimize blood loss
 - Lower transfusion rates
- Better postoperative pain control
- Decreased Infection Rates
- Shorter inpatient stay (≤ 3 days)
- Earlier return to function
- Lower overall cost of care
 - Value = Quality/Cost
- Improve Patient Education
- Higher Patient Satisfaction

Computer Assisted Surgery

Multimodal Approach to Perioperative Pain Control

- Intraoperative anesthesia techniques
- Opioids, oral vs. parenteral
- Non-opioid Analgesics
- Membrane-Stabilizing Pain Medications
- Supportive or minimally invasive effects of pain management

Clinical Pathways

- Operating Room
 - Dedicated Orthopaedic Team: Surgeon, Anesthesiologist, Nursing Staff and Implant Rep.
 - Decreased OR time
 - Decreased turnover
 - Committed Ancillary Staff: Preop and PACU Nurses, Central Processing
 - WHO protocol = Enhanced Patient Safety
- Multi-disciplinary approach:
 - Physicians
 - RN’s
 - Case managers
 - Physical therapists
 - Pharmacist
 - Pain Management
- Goal: Maximize benefits to patient, health-care system
Post-Operative Protocol

- ≤ 3 day LOS
- Multi-Modal Pain Management
- Aggressive PT
- DVT Prophylaxis
- Earlier MD Follow-up

St. Charles Hospital Bend

- JCAHO Disease Specific Certification for Total Joint Replacement
- Outcomes Analysis
- Multidisciplinary Care Delivery Pathways
 - Orthopaedics, Internal Medicine, Nursing, Therapy, Pharmacy, Case Management
- Multidisciplinary Rounds
- Pilot Site for AJRR

OUTCOMES – The Center (2009)

- Medicare Surgical Complications
 - Acute Myocardial Infarction
 - Acute Renal Failure
 - Respiratory Failure
 - Major Bleeding
 - Septicemia
- OR Specific Measures
 - Joint Surgery
 - Catheter Use
 - Sepsis

<table>
<thead>
<tr>
<th>Medicare Surgical Complications</th>
<th>OR Specific Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Myocardial Infarction</td>
<td>Joint Surgery</td>
</tr>
<tr>
<td>Acute Renal Failure</td>
<td>Catheter Use</td>
</tr>
<tr>
<td>Respiratory Failure</td>
<td>Sepsis</td>
</tr>
<tr>
<td>Major Bleeding</td>
<td></td>
</tr>
<tr>
<td>Septicemia</td>
<td></td>
</tr>
</tbody>
</table>

Robotics, Custom Patient Blocks and Other Hot Topics

- Marketing driven
- Evidence limited
- Possible future improvements

Summary

- Osteoarthritis of the hip and knee are common and often severely disabling conditions that affects millions of Americans
Summary

- Total hip and knee arthroplasty using conventional techniques, instrumentation, and implants have provided excellent clinical results in terms of pain relief and improvement in QoL.

- New techniques and technologies such as MIS TJR, well designed clinical pathways, computer-assisted surgery, and alternate bearing surfaces have the potential to shorten recovery time, improve implant longevity, and improve clinical outcomes associated with TJA.

- Long-term data is needed before we can adequately judge the impact of these new techniques and technologies on patient outcomes and quality of life.

Thank You!!!