Management of Hypothyroidism—an Evidence Based and Practical Approach

St. Charles Health System
Bend, Oregon
January 18, 2013

Peter A. Singer, M.D.
Professor and Chief
Clinical Endocrinology
Keck School of Medicine
University of Southern California

Learning Objectives

- Apply guideline-directed and evidence-based approaches for the diagnosis and management of hypothyroidism
- Describe clinical presentation and patient factors associated with hypothyroidism
- Outline treatment for patients with hypothyroidism, including those experiencing residual symptoms
- But first, just 2 slides on physiology (with more to come later)

Hypothalamic-Pituitary-Thyroid Axis

TSH is the Most Sensitive Test for Thyroid Status

From: Spencer et al JCEM. 70: 453, 1990

Etiologies of Primary Hypothyroidism

- Chronic autoimmune (Hashimoto’s thyroiditis)
- Ablative therapy
 - 131-I
 - Surgery
- Pharmacologic agents
 - Amiodarone (and other iodides)
 - Lithium carbonate
 - Interferons, interleukins
 - Tyrosine kinase inhibitors

Symptoms of Hypothyroidism

- Arthralgias
- Cold intolerance
- Constipation
- Decreased appetite
- Impaired memory
- Decreased perspiration
- Depression
- Dry skin
- Fatigue
- Hoarseness
- Lethargy
- Menstrual disturbances
- Muscle cramps
- Paresthesias
- Sleepiness
- Weight change

Signs of Hypothyroidism

- Bradycardia
- Coarse hair
- Dry, cool, pale skin
- Goiter
- Hoarseness
- Nonpitting pre-tibial edema
- Puffy eyes and face
- Slow movements
- Slow speech
- Delayed relaxation of deep tendon reflexes
- Thinning lateral third of eyebrows

Case Study: JP—Mildly Elevated TSH

- 73-year-old woman with elevated cholesterol of 278 detected at routine health fair. On questionnaire, responded with:
 - Fatigue
 - Becoming forgetful
 - Depression (husband died 6 months prior)
- Exam: pulse: 68, BP: 152/96, placid appearance, exam otherwise normal
- Saw her physician, who checked TSH: 7.2 µu/L(0.4-4.0); FT4: 1.2 ng/dL (0.8-2.0)
- An antidepressant was prescribed, and she was asked to return if no improvement

Questions

- Should TPO antibodies have been measured?
 - CPG Grade B, BEL 1
 - If Ab’s +, mprogress to overt hypothyroidism
- Should her subclinical hypothyroidism (normal T4 and elevated TSH) have been treated with L-T4?
 - We’re still arguing!
- Should clinical scoring systems be used in the diagnosis of hypothyroidism?
 - NO! Grade A, BEL 1

Natural History for the Development of SCH: 10-Year Follow-Up

- Over 10-year follow-up:
 - 34% overt hypothyroidism
 - 57% SCH
 - 9% euthyroid
- Greatest predictors of overt disease
 - Initial TSH level
 - Presence of antithyroid antibodies (4.3 %/yr v 2.6 % if neg)

Progression of Subclinical to Overt Hypothyroidism

- Do not measure T3!
Prevalence of Elevated Serum TSH by Decade of Age and Gender (n = 798)

![Graph showing Prevalence of Subclinical Hypothyroidism (SCH) in Women in Different Age Groups](image)

Clinical Effects of SCH
- Progression to overt hypothyroidism
- Symptoms of hypothyroidism
- Effects on mood and cognition
- Effects on lipid levels
- Effects on the heart
- Effects on children of hypothyroid mothers

Mild Thyroid Failure: Cognitive Function with LT4 Therapy
- 14 patients
- TSH ~8.8
- Wechsler Memory Scale

*P<0.05

On the other hand……

 40 women with mean TSH ~8 and normal FT4, divided into L-T4 and control groups studied for 6 months
 - Results: neuropsych and other symptoms showed no difference with L-T4 Rx to normal TSH

 89 individuals (45 men, 44 women) with TSH <10, and 154 euthyroid controls (72 men, 82 women). 69/89 with SCH entered into placebo controlled, double blind L-T4 Rx.
 - Results: no difference in neuropsych or QOL with Rx

Colorado Study: TSH and Cholesterol

TC (mg/dL)	TSH (mIU/L)
<0.3 | 0.3-5.1
5.2-10 | >10
15-20 | >20
40-60 | >80

All TC values were significantly different from euthyroid TSH values (P<.003).
LDL increased P<.001

TC = total cholesterol.
HDL-C = high-density-lipoprotein cholesterol; MI = myocardial infarction.

Subclinical Hypothyroidism, Lipids, and the Heart

- Normal or slightly ↑ total cholesterol
- ↑ LDL-C
- ↓ HDL-C
- Endothelial dysfunction
- Aortic atherosclerosis
- MI

HDL-C = high-density-lipoprotein cholesterol.

Colorado Thyroid Disease Prevalence Study (N=25,862)

% Abnormal Total CHOL, LDL-C, HDL-C

![Graph showing percentage of abnormal cholesterol levels]

Subclinical Hypothyroidism, Lipids, and the Heart

Basel Thyroid Study (N=63)

Reduction in Total Cholesterol with LT4 in SCH

![Graph showing reduction in total cholesterol with LT4]

SCH as Risk Factor for Cardiovascular Disease: The Rotterdam Study

- Euthyroid
- SCH
- SCH and antibodies

![Graph showing odds ratio for cardiovascular disease]

1Adjusted for patient age; 2Thyroid peroxidase; Reference risk.

Does treatment of SCH make a difference?

<table>
<thead>
<tr>
<th>TSH 4.5-10</th>
<th>Strength of Association</th>
<th>Benefit of Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypothyroid sx</td>
<td>None</td>
<td>Insufficient</td>
</tr>
<tr>
<td>Neuropsych sx</td>
<td>None</td>
<td>Insufficient</td>
</tr>
<tr>
<td>CV endpoints</td>
<td>Insufficient</td>
<td>No evidence</td>
</tr>
<tr>
<td>Lipids</td>
<td>Insufficient</td>
<td>Insufficient</td>
</tr>
<tr>
<td>Cardiac dysfx</td>
<td>Insufficient</td>
<td>Insufficient</td>
</tr>
</tbody>
</table>

Surks, M et al. JAMA 2004

So, to treat or not to treat with L-T4

- **TSH < 10**
 - little evidence to support for age >70
 - ok for younger, if symptoms, positive TPO AB,s, goiter, desire pregnancy

- **TSH > 10**
 - treat

- **Caveat—clinical judgment prevails!**
Cooper DS and Biondi B. Lancet 2012: 379; 1142-1154

Hypothyroidism and Pregnancy

<table>
<thead>
<tr>
<th>Mothers</th>
<th>IQ of Children</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal TSH (n=124)</td>
<td>107 +/- 12</td>
</tr>
<tr>
<td>Hypothyroid Rx LT4 (n=14)</td>
<td>*111 +/- 12</td>
</tr>
<tr>
<td>Hypothyroid no Rx (n=48)</td>
<td>#100 +/- 15</td>
</tr>
</tbody>
</table>

*Normal vs Rx, P=0.2, #Normal vs no Rx, P=0.005

Is Screening for Pregnancy Recommended?

- Very controversial, but AACE/ATA CPG’s:
 - Grade B, BEL 1

Society Guidelines for Treatment of SCH

- AACE/ATA—unclear, but for TSH >10, Grade B, BEL 1.
- Endocrine Society--ditto
Treatment of Patients with Subclinical Hypothyroidism
Thyroidologist Practice Patterns

Survey of ATA & AMA members

Hypothetical cases:
- Young vs. Older
- TSH 8.2
- + Ab’s

McDermott MT et al. Thyroid. 2001.

What About Screening Recommendations, with TSH?
- American Thyroid Association (ATA)—at age 35 and every 5 years, at routine examination.
- American Association of Family Physicians —insufficient evidence to screen
- American College of Physicians —women > 50 years of age, if symptoms
- US Preventative Services Task Force—insufficient evidence for or against screening
- AACE/ATA CPG’s—consider for people >60 yrs
 - Grade B, BEL 1

What About Case Finding? Stratification of At-Risk Populations*
- Psychiatric diagnosis
- Women <35 years of age
- Men <60 years of age
- Hyperlipidemia
- Women >35 years of age
- Men >60 years of age
- Gestation
- Postpartum
- Family history of thyroid disease
- Recent change in symptoms
- Women >60 years of age
- Type 1 diabetes
- Autoimmune disease
- Lithium, interferon alpha, amiodarone, TKIs
- Thyroid surgery/radiation

What about case finding?
- AACE/ATA CPG’s—Grade B, BEL 2

Case Study: JP—SCH, 2-Year Follow Up
- JP struggled for the next 2 years and her family felt she was going “downhill”
- Thyroid tests were repeated:
 - TSH: 28.2 mu/L (0.4-4.0)
 - FT4: 0.8 ng/dL (0.8-2.0)
 - TPOAb 198 (<0.5) (so, might have been predictive)?
Progression of Subclinical to Overt Hypothyroidism

Clinical Effects of Overt Hypothyroidism—Subclinical Amplified

- Symptoms and signs of hypothyroidism
- Effects on mood and cognition
- Effects on children of hypothyroid mothers
- Effects on lipid levels
- Effects on the heart

Treatment of Overt Hypothyroidism

- Goal: normalize TSH level
- Starting dose for healthy patients: <50 to 60 years of age may begin at full replacement—1.6 µg/kg/day (Grade B, BEL 2)
- Starting dose for healthy patients ≥50 to 60 years of age should begin at ≤50 µg/day (Grade B, BEL 4). Dose should be increased by 25 µg/day, if needed, at 6- to 8-week intervals, depending on the TSH concentration (Grade B, BEL 2).
- Starting dose for patients with CAD should begin at 12.5 to 25 µg/day and increase by 12.5-25 µg/day, if needed, at 6- to 8-week intervals (Grade B, BEL 2).
TSH Distribution in Normal Population

![TSH Distribution Graph](image)

- **Mean TSH Goal (on LT4 treatment): 0.5-2.0 mU/L**

Determinants of L-Thyroxine Requirements
- Age
- Severity and duration of hypothyroidism
- Weight
- Concomitant drug therapy
- Pregnancy
- Presence of cardiac disease

Increasing Thyroid Hormone Dose Requirements: Differential Diagnosis
- Non-compliance
- Pharmacy error
- Other medications
- Weight gain
- Change of LT₄ brands
- Malabsorption (celiac disease)

Increasing Thyroid Hormone Dose Requirements: Medications
- Iron
- Calcium
- Proton Pump Inhibitor
- Antacids
- Sucralfate
- Estrogen
- Sertraline
- Bile acid resins
- Anticonvulsants

What about treated patients who still feel poorly?

A 46-year-old woman with treated hypothyroidism, due to Hashimoto’s, on L-T₄. She still has severe, unrelenting fatigue; continues to have depression, difficulty concentrating, poor memory, and difficulty losing weight but insists she takes her medications. She wants T4:T3 combination—"I’m not a converter!"

Past medical history: Fibromyalgia

Physical exam: BP: 128/75; pulse: 72; height: 5’4”; weight: 156 lb
Complete exam normal

Lab: TSH: 1.1 mU/L; Free T4 1.4 ng/dL (nl: 0.8-1.8)
TPO Ab’s 995 (<0.5)

Colorado Thyroid Disease Prevalence Study (N = 25,862)

Thyroid Status among Treated Participants (n = 1525)

<table>
<thead>
<tr>
<th>Status</th>
<th>Participants (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperthyroid</td>
<td>0.9</td>
</tr>
<tr>
<td>Subclinical Hypothyroid</td>
<td>20.7</td>
</tr>
<tr>
<td>Euthyroid</td>
<td>60.1</td>
</tr>
<tr>
<td>SCTH</td>
<td>17.6</td>
</tr>
<tr>
<td>Hypothyroid</td>
<td>0.7</td>
</tr>
</tbody>
</table>

McDermott MT, In Werner and Ingbar’s The Thyroid (Braverman L, Cooper D), 2012 (in press)
Persistent Symptoms on LT4 Rx

Community Based Questionnaire Study:

- 397 Hypothyroid Patients with normal TSH on LT4
- 397 Control Subjects (matched for gender and age)

<table>
<thead>
<tr>
<th>Abnormal Survey Score</th>
<th>Patients</th>
<th>Controls</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Health Questionnaire</td>
<td>26%</td>
<td>34%</td>
<td><.014</td>
</tr>
<tr>
<td>Thyroid Symptom Questionnaire</td>
<td>35%</td>
<td>35%</td>
<td>.41</td>
</tr>
</tbody>
</table>

Saravanan P, Clin Endo 2002; 57:577-85

Hashimoto’s Thyroiditis

Coexisting Autoimmune Diseases

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Symptom (% of) Men (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rheumatoid arthritis</td>
<td>4.7</td>
</tr>
<tr>
<td>B12 deficiency</td>
<td>4.5</td>
</tr>
<tr>
<td>Vitiligo</td>
<td>2.8</td>
</tr>
<tr>
<td>Celiac disease</td>
<td>1.2</td>
</tr>
<tr>
<td>Inflammatory bowel disease</td>
<td>0.7</td>
</tr>
<tr>
<td>Type 1 diabetes mellitus</td>
<td>1.2</td>
</tr>
<tr>
<td>Systemic lupus erythematosus</td>
<td>0.7</td>
</tr>
<tr>
<td>Multiple sclerosis</td>
<td>0.7</td>
</tr>
<tr>
<td>Addison’s disease</td>
<td>1.2</td>
</tr>
<tr>
<td>Myasthenia gravis</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Any other autoimmune disease: 14.3%

Are Some Symptoms Due to Hashimoto’s Thyroiditis?

426 Euthyroid women with goiter undergoing thyroidectomy

Assessments: symptoms, thyroid antibodies, thyroid histology

<table>
<thead>
<tr>
<th>TPO Ab Positive</th>
<th>TPO Ab Negative</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSH mU/L</td>
<td>1.7</td>
<td>1.5</td>
</tr>
<tr>
<td>Symptom Score</td>
<td>6.7 ± 2.5</td>
<td>4.1 ± 2.8</td>
</tr>
</tbody>
</table>

Symptoms associated with TPO Ab (Hashimoto’s Disease)

Fatigue, irritability, nervousness, lower quality of life, dry hair, early miscarriage, history of breast cancer

NS = non-significant. Ott J et al. Thyroid. 2011;21(2):161-167

Would a T4/T3 Combination Help Her?

(Time for a little more physiology)

- T4 101 ug/day
- T3 6 ug/day
- T3 20 ug/day
- T3 26 ug/day

20% secreted
80% converted from T4

Deiodinases

- T4
 - D2, D1
 - D3, (D1)
 - D1: Liver, distal (circulating T3)
 - D2: Brain, pituitary (brain T3)
- T3
 - D3, (D1)
 - D1, D2
- T2

McDermott MT, Endocrine Practice 2012; May 1; 1:30 (e-pub ahead of print)

Maybe L-T4 alone isn’t enough?

Response of L-T4 vs LT4/T3, and effect on psychological well-being

Study:

- 532 hypothyroid patients (84T, 166M)
- Mean age 57 yrs; mean LT4 dose 123-127 mcg/day
- RCT: LT4 × LT4 (usual dose – 50 mcg) × LT3 10 mcg × 3 months

Polymorphisms:

- 16 tested across all 3 Deiodinase genes: 16 % Thr92Ala D2
- Polymorphism homozygotes

General Health Questionnaire:

- Those patients with the Thr92Ala D2 polymorphism (16%) were worse at baseline on L-T4 alone, and improved more with LT4/LT3 c/w LT4 alone (p = .03)

Panicker V, J Clin Endocrinol Metab. 2009; 94;1823:9
Type 2 Deiodinase Polymorphisms
Effect on Response to LT4 and to LT4/LT3

Subjects: 552 hypothyroid patients (84% women, 16% men; mean age: 57);
mean LT4 dose: 123-127 mcg/day
Randomized controlled trials: LT4 vs LT4 (usual dose: 50 mcg) + LT3 10 mcg x 3 months
Polymorphisms: all deiodinase genes tested for 16 polymorphisms
Thr92Ala homozygotes = 16%

General Health Questionnaire
Thr92Ala Homozygotes
Baseline: worse compared with no polymorphisms (P = .03)
LT4/LT3 treatment: improved more compared with LT4 alone (P = .03)

Combined LT/LT3 Therapy
Randomized Controlled Trials

<table>
<thead>
<tr>
<th>Study</th>
<th>Objective Benefit</th>
<th>Subjective Benefit</th>
<th>Preference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bunevicious 1999</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Walsh 2003</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Sawka 2003</td>
<td>No</td>
<td>No</td>
<td>NA</td>
</tr>
<tr>
<td>Clyde 2003</td>
<td>No</td>
<td>No</td>
<td>NA</td>
</tr>
<tr>
<td>Siegmund 2004</td>
<td>No</td>
<td>No</td>
<td>NA</td>
</tr>
<tr>
<td>Saravanan 2005</td>
<td>No</td>
<td>No</td>
<td>NA</td>
</tr>
<tr>
<td>Escobar-Morreale 2005</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Apelhof 2005</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Rodriguez 2005</td>
<td>No</td>
<td>No</td>
<td>NA</td>
</tr>
<tr>
<td>Regalbuto 2007</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Slawik 2007 (central)</td>
<td>No</td>
<td>No</td>
<td>NA</td>
</tr>
<tr>
<td>Escobar-Morreale 2005 review</td>
<td>No benefit of T4/T3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grozinsky-Glasberg 2006 meta-analysis</td>
<td>No benefit of T4/T3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NA = not applicable.

Why Do Some Treated Hypothyroid Patients Still Feel Poorly?

n Symptoms may persist in hypothyroid patients even after they are biochemically euthyroid on levothyroxine therapy
n This may be due to a coexisting nonendocrine illness
n This may be due to Hashimoto’s thyroiditis itself
n This may be due to a coexisting autoimmune condition
n Some patients may have a D2 polymorphism that subtly impairs T4 to T3 conversion in the brain; no test available

LT4/LT3 Therapy for Hypothyroidism
Summary

Should all hypothyroid patients be treated with combination LT4/LT3 therapy?
– No

Should any hypothyroid patients be treated with combination LT4/LT3 therapy?
– Reasonable if symptoms persist on optimal LT4 therapy

Clinical use of combination LT4/LT3 therapy
– The optimal T4:T3 ratio is ~10:14:1
– LT3 is best taken twice daily or as slow release
– Avoid thyroid hormone excess (low TSH)

McDermott MT, Endocrine Practice 2012; May 1: 1-30 (e-pub ahead of print)

Singer’s Rule for Treatment of Hypothyroidism

– No contraindication for T4/T3, but monitor TSH to make sure you’re not overtreating.
– If you want a busy practice, don’t argue!

Returning to Case JP……..

– L-thyroxine 0.025 mg/day was initiated, and the dose was gradually increased at 6-week intervals
 – Within 4 months she like “her old self”
– TSH: 1.2 μu/L; FT4: 1.4 ng/dL

Page
Thank you!

Questions?